보도자료

보도일시	2024. 3. 18.(월요일) 09시부터 보도 가능
	국제엠바고를 준수하여 주시기 바랍니다
문의	블루카본 연구단장 김종성 교수(02-880-6750) / 교신저자
	블루카본 연구단 김태우 박사(02-872-6750) / 제1저자

■ 제목/부제

제목	서울대 자연과학대학 김종성 교수 연구팀, 갯벌 자정 능력 세계 최초 규명
부제	- 환경 분야 국제 최상위 학술지 Environment International 저널에 실려 -

■ 요약

연구 필요성	국내 유일 내만형 갯벌인 "마산 봉암갯벌"의 육상기원 오염물질 자정능력을 정량적으로 확인하기 위한 연구 "마산 봉암갯벌"은 인근 주거 및 산업지역에 의해 오염물질 유출에 지속 노출 → 즉, 육상과 외해의 완충역할을 하는 갯벌의 자정능력을 정량적으로 평가하여 갯벌생태계 서비스 가치를 규명할 필요가 있음. → 이를 확인하기 위해 마산 봉암갯벌 내 오염퇴적물의 정화 프로세스를 확인하는 현장메조코즘 연구를 연구
연구성과/ 기대효과	김종성 교수는 "현장 메조코즘 실험을 통한 갯벌의 조절서비스 기능을 규명한 세계 최초 연구 사례로, 갯벌로 유입되는 육상기인 유기오염물질의 분포, 거동, 생태계 영향을 종합적으로 파악하고 머신러닝 기법을 적용하여 예측 모델을 제시했다"고 말하면서, "향후 갯벌 생태계 서비스 가치 제고는 물론 갯벌 복원과 관리를 위한 해양보호 정책에 활용할 수 있는 근거를 제시했다는 데 큰 의미가 있다."고 소감을 밝혔다.
초록	갯벌은 육상과 해양 사이에서 각각으로부터 오는 오염부하에 대한 완충 역할을 한다. 이로 인해 갯벌은 오랜 시간 동안 오염과 정화의 균형을 이루고 있다. 갯벌의 오염물질 자정능은 생태계 서비스 중 조절 서비스로서의 중요한 가치로 여겨지고 있으나 아직까지 구체적이고 정량적인 정화능력에 대해 알려지지 않았다. 본 연구에서는 갯벌의 정화능력을 평가하기 위해 60일간 마산 봉암갯벌에서 현장 메조코즘 연구를 진행하였다. 갯벌이 오염물질을 정화하면서 변화되는 화학적, 독성학적, 생태학적 10가지 요인들을 확인하였고 그 변화 특성들을 삼중접근법과 함께 머신러닝 기법을 활용하여 파악하였다. 오염된 퇴적물은 시간이 지남에 따라 화학적-독성학적으로 60일동안 최대 70%까지 회복하였고 이는 특히 미생물들의 활동으로 인한 것으로 확인되었다. 특히, 갯벌 내 대형저서동물과 염생식물이 오염퇴적물 정화를 크게 향상시켰다. 또한 대형저서동물과 염생식물이 갯벌의 자정 속도를 500일에서 300일로 단축시킬 수 있다는 것을 예측 모델을 통해 확인하였다. 갯벌 퇴적물 내 생물의 다양한 활동이 오염물질의 분해, 탈착, 이동 등 거동을 증가시켰고,이 변화로 통해 오염물질의 양이 감소한 것으로 해석된다. 전반적으로, 본 연구는 갯벌의 육상기원 오염물질에 대한 정화능력을 정량적으로 규명하여 향후 갯벌 생태계 관리를 위해 환경과 생태를 동시에 고려하는 통합적 접근이 필요함을 시사하였다.
Journal Link	https://www.sciencedirect.com/science/article/pii/S016041202400120X

■ 본문

<연구논문 주요 내용>

제목

Integrated assessment of the natural purification capacity of tidal flat for persistent toxic substances and heavy metals in contaminated sediments

○ 주요 내용

- 삼중접근법을 활용한 메조코즘 연구를 통해 갯벌의 정화 특성을 밝힘
- 대형저서동물 및 염생식물이 육상기원 오염물질을 효과적으로 정화하는 데 기여함
- 대형저서동물의 활동과 염생식물은 미생물 군집 변화를 촉진함
- 해양생물들로 인해 모물질의 빠른 대사로 갯벌 정화능이 약 40% 이상 향상되었음

○ 연구 성과 질적 우수성

- 갯벌의 육상기원 오염물질 정량적 정화능력을 삼중접근법을 통해 최초로 연구한 논문임
- 삼중접근법 및 머신러닝 기반 **해양생태계 조절서비스 가치 제고**를 위한 과학자료 구축
- 향후 갯벌복원 및 연안 관리를 위한 기초 연구로 활용될 수 있음

○ 본 연구를 위해 수행한 과제

- 해양수산환경기술개발사업, 광역 해양생태계 변동요인 대응·관리를 위한 AI기반 해양생태계 진단·예측 기술개발, 202300239887
- 해양수산환경기술개발사업, 블루카본 기반 기후변화 적응형 해안조성 기술개발, 20220526
- 해양수산환경기술개발사업, 해양유해물질오염원 추적기법개발, 20220534
- 한국연구재단, 연안환경 내 육상기인오염물질의 생지화학적 특성 및 거동 메커니즘 규명을 통한 해양생태계 조절서비스의 정량적 가치 평가 연구, NRF-2022R1A2C1092682
- 한국연구재단, 해양생태계 건강성 평가 위한 머신러닝 기반 진단·예측 기법 개발, RS-2023-00249256

※ 연구 이야기

□ 연구를 시작한 계기

- o 최근 국가적으로 해양 환경을 보존하고 되살리려는 움직임들이 많아져 갯벌의 중요성도 함께 커지고 있고, 여러 시민 단체에서도 갯벌의 심미적 가치와 더불어 환경적 가치에 대해 관심이 많아지고 있음.
- o 특히 해양생태계 서비스들 중 조절서비스인 '정화'능에 대해 객관적이고 과학적인 결과의 수요가 높아지고 있으나 국내 외 다수의 문헌에서 정량적으로 증명한 연구는 미비하였고, 이에 오늘날 갯벌의 가치를 환산하는 데 있어 과거 오래 전 연구 결과에 의존할 수밖에 없었음.
- o 따라서 갯벌의 가치 제고와 더불어 향후 갯벌복원 및 연안 관리를 위한 기초 연구로 활용하기 위해 본연구를 시작하였음.

□ 연구과정 중 어려웠던 점

- o 연구 결과의 정확성을 높이기 위해 현장 메조코즘 실험을 진행하였음.
- o 실험 장비 설치 기간만 3일, 850L 부피의 장비 안에 퇴적물을 이식하는 데 큰 어려움이 있었음.
- o 또한 현장 메조코즘 연구 특성상 총 60일의 실험기간 동안 현장 갯벌에서 연구 장비 및 실험 기구를 관리해야만 했음.
- o 새벽부터 밤까지 식사시간을 제외하고 메조코즘을 관리하여 체력적으로 힘들었으나 눈앞에서 펼쳐지는 갯벌의 아름다움에 위안을 얻음.

□ 이전 연구와 차별화 포인트

- o 연구실 내 실험(in lab)이 아닌 현장(in situ)에서의 갯벌 정화 연구 진행
- o 갯벌 퇴적물의 건강성을 판단하기 위한 삼중 접근법 (Triad approach)과 머신러닝 기술 분석 접목
- o 갯벌 퇴적물 회복 프로세스 4가지 특성 규명